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AImrtct--In this paper a class of problems is examined in which a solid particle translates in a semi-infinite 
fluid whose surface is contaminated with a surfactant film. The fluid motion generated is assumed to be 
slow,, quasi-steady, and axisymmetric. Various linearised models governing the variation of film concen- 
tration are encompassed, and the constitutive properties of the film are described in terms of coefficients of 
surface shear and surface dilatational viscosity. The problem of a Stokeslet whose direction is normal to the 
film is solved, and the results are applied to computing approximate expressions for the force on a 
translating particle when far from the surface. 

1. I N T R O D U C T I O N  

The last two decades have seen a surge of interest in the design and theoretical analysis of 
instruments for the measurement of the coefficient of surface shear viscosity of monomolecular 
surfactants adsorbed in the surface of a bulk fluid. Much of this work is reviewed by Goodrich 
(1973), and further recent references are Briley et ai. (1976), Oh & Slattery (1978), Shail (1978, 
1979), Shail & Gooden (1981), etc. From the theoretical point of view most authors have 
considered either systems in which bodies rotate (either immersed within the bulk fluid or in 
contact with the surfactant layer), or parallel-flow configurations. In contrast with early 
calculations, full allowance is now made, via the boundary condition imposed at the surfactant 
surface layer, for the hydrodynamic interaction of the film with the motion of the substrate bulk 
fluid. 

The form of the dynamic boundary condition on the velocity components in the surfactant 
film was investigated in detail by Scriven (1960), using a rheological model in which the 
properties of the film are described in terms of the Boussinesq coefficients of surface shear 
viscosity 77, and surface dilatational viscosity K. For a film incident with the plane z = 0, and 
separating two incompressible bulk phases with viscosities/~ and/~2, occupying z > 0 and z < 0 
respectively, these boundary conditions take the form 

"°2-'(2=-°o~+("+'7)ox~ax oy/ nTy~,-Tf- ax/ [t] 

and 

~~'~-~~=-~+(~+'~)ay~ox ay: '~7-;x~-~-y- a~: [21 

on z = 0, where ~.(/~, r~) etc. are the shear stresses exerted on the interface by the substrate bulk 
fluids in z > 0 and z < 0. In [1] and [2], ux and Uy are the rectangular components of fluid 
velocity in the film, p, is the surface pressure which is related to surface concentration of 
surfactant by an equation of state, the motion is assumed to be slow enough for the Stokes 
linearisation to be valid, and the inertia of the film has been neglected. 

For steady axisymmetric Stokes-flow rotation problems (loc. cit.) the velocity vector field in 
all three phases of the system is in the aximuthal d,-direction of a cylindrical polar coordinate 

627 



628 R. SHALL and D. K. GOODEN 

system (p, 4', z). All fluid particles describe circles, with centres on the z-axis of rotation, and in 
planes perpendicular to the axis of rotation. In this case, for an insoluble surfactant, the surface 
pressure (and hence surface concentration) can bo taken as constant, and [1], [2] reduce to the 
simple form 

c~2vl Ov~ Or2 
n - ~ z  - ~ , - ~ - +  ~ 2 7 z :  o on z = O, [31 

where r) 1 and D 2 are the azimuthal velocity components in z > 0 and z < 0 (note that v, = v2 on 
z = 0). In the bulk phases, Vl and v2 both satisfy the equation 

02v 10v 02v v 
=o, [4] 

the pressure being constant throughout each phase. 
It is the object of this and subsequent articles to investigate axisymmetric motions without 

swirl, i.e. the fluid velocity vector v has the form v -- u(p, z)/~ + w(p, z)~ where ~ and i are unit 
vectors in the directions of p- and z-increasing. With the exception of parallel flows, there 
seems to be little published work on this topic, and we wish to investigate the motion generated 
in a semi-infinite surfactant-covered fluid by an axisymmetr/c solid, which moves parallel to one 
of its axes of symmetry in a direction normal to the fluid surface. Assuming that the interfacial 
film remains plane, [I] and [2] are replaced, in an obvious notation, by 

r~m~)- ~'~2) = - - ~ +  (n + K) { 1 ~  ( p - ~ ) -  ~ }  on z = O. [5] 

Such problems are more difficult than the rotation configurations, since the fluid motion in the 
film is no longer consistent with constant surface pressure. It is therefore necessary to consider, 
along with the bulk-fluid dynamical equations, models for the determination of the surface 
pressure p, and the molecular surface concentration n in the film. 

In writing down equations for the calculation of n, various processes can be considered. For 
surfactants insoluble in the bulk phases, surface diffusion is a possible rate-determining process. 
For soluble surfactants the mechanisms of adsorption and desorption, and of bulk diffusion into the 
film from the substrates merit attention. The resulting equations, together with [5], couple the film 
velocity component u, the concentration n, and therefore Ps via the equation of state of the film, in a 
nonlinear manner, and in order to make analytic progress with the solution of specific 
boundary-value problems, it seems to be necessary to linearise about an equilibrium state in the 
manner suggested by Levich (1962). 

The basic configuration and plan of this paper is as follows. An axisymmetric solid translates 
steadily, parallel to an axis of symmetry, through the bulk phase 1 normal to the surfactant film, 
which is assumed to remain plane. For simplicity the bulk fluid labelled 2 above is replaced by a 
vacuum, but there is no essential difficulty in extending the analysis to the three-phase system. 
In section 2 the basic equations of motion are formulated, the fluid motion being sufficiently 
slow to allow the quasi-steady Stokes approximation to be made. Each of the model film 
behaviours outlined in the previous paragraph is considered, and appropriate linearised forms 
are discussed. 

In section 3 the various models are applied to the problem of finding the fluid motion 
generated by an axial Stokeslet in the bulk fluid. Using the approach of Brenner (1962), 
approximate expressions are derived in section 4 for the drag on an arbitrary axisymmetric 
body which translates perpendicularly to the surfactant film. These drag formulae are valid 
when a/h ~ 1 and are correct to O(ae/h2), where a is a typical dimension of the solid and h a 
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representative distance of the solid from the surface film [for analagous consideration in the 
rotation problem see Shail & Gooden (1981)]. The analysis generates no fewer than five 
dimensionless groups, so that a large variety of asymptotic behaviours is possible. 

2. BASIC FORMULATION 

The geometrical configuration considered is as follows. A semi-infinite expanse of viscous 
incompressible fluid, with coefficient of viscosity/z, occupies the region z > 0, where (p, ~, z) 
are cylindrical polar coordinates whose z-axis is drawn vertically downwards. The plane 
horizontal surface z = 0 of the bulk fluid is covered by a thin surfactant film a few molecules 
thick. The Boussinesq coefficients of surface shear viscosity and surface dilatational viscosity 

of the film are denoted by 77 and K.t Within the bulk fluid there is a solid body, surface S, such 
that the z-axis is an axis of rotational symmetry of the solid. This body moves slowly with 
constant speed U parallel to the z-axis, i.e. normal to the undisturbed surface film, and a, h 
denote a typical dimension of the body, and the distance of a suitable 'centre' of the body from 
the film. 

The fluid motion induced by the moving solid is unsteady, and in general the surface film will 
not remain plane. However, a first simplification occurs if we assume that the fluid motion is 
sufficiently slow for the quasi-steady Stokes creeping-motion approximation to be made. 
Sufficient conditions for the validity of this approximation are Ua/u ~ 1 and Ua2/uh <~ 1, where 
u is the kinematic viscosity of the bulk fluid (see Happel & Brenner 1965). The time t no longer 
appears explicitly in the problem, and the bulk-fluid velocity vector v satisfies the linear 
equations 

~. curl curl v = - 9p, [6] 

and 

div v = 0, [7] 

where p is the pressure field. On S, v satisfies the no-slip kinematic boundary condition, i.e. 

v = U~. on S, [8] 

and further v must tend to zero at large distances from S. 
Consider next the surface film. We propose to treat this as remaining plane and incident with 

z = 0 throughout the motion. An approximation of this type has been widely used by various 
authors (see e.g. Brenner 1961, Bart 1968, Lee et al. 1979, 1980) in discussing the motion of 
spheres near clean free surfaces and fluid interfaces, and can be realised in a number of ways. 
Thus, if alh ~ 1, or if the surface tension is sufficiently large to prevent distortion,~ the surface 
remains plane in a first approximation; alternatively, if we revert to the three-phase system, a 
sufficiently large density difference between the upper and lower bulk fluids will achieve 
approximate planarity of the interface. Thus, the appropriate form of [5] is taken to be 

au o!,, K) [ l  O__ ! ou~ u l 
/~' a z  = - 0--"~ + ( ' r / +  [pap~P~pJ--~[onz=O, [9] 

u = u(p, 0) being the radial component of fluid velocity in the film (equal of course to the 

tExperimentally, for some surfactants , is found to depend on surface concentration and on shear rate in the film. In this 
paper ~ and g are treated as constants. 

~:Specifically, this requires that U~min • ,~ 1, where ~ is the surface tension of the film. Note that ~ = ~o- P,, where ~o is 
the surface tension of the pure bulk liquid. 
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bulk-fluid value at z = 0). Further, the requirement that the surface remain in z = 0 implies that 

w = 0 o n z = 0 ,  0~<p<~,  [10] 

where w(p, z) is the z-component of fluid velocity. Note that it is not possible to impose 
simultaneously with [9] and [10] the requirement of the vanishing of normal stress ~'~z at the 
surface. This normal stress imbalance is found in all the references quoted above, and is 
assumed to be compensated by surface tension effects. 

In order to eliminate the surface pressure p~ in [9], the processes governing changes in film 
concentration must be considered. It is envisaged that the surface of the bulk fluid remains 
everywhere covered with surfactant throughout the motion; thus, for example, we exclude 
concentrations sufficiently large so as to cause phase changes such as micelle formation. Let the 
surfactant concentration be n molecules per c m  2. Then n is a function of p and is related to the 
surface pressure by an "equation of state" of the general form 

p, =/(T, n), 

where T is the temperature. Here attention is restricted to isothermal situations, and the reader 
is referred to the texts of. Adamson (1976), and Davies & Rideal (1961) for experimental data on 
the (n, ps)-isotherms for various surfactants. For weak surfactants a linear relationship of the 
form 

ps = kTn, [ll] 

where k is the Boltzmann constants, is often found; [11] is the equation of state of the so-called 
gaseous film. Wrinting n = no+ n', where no is the constant equilibrium concentration of the 
film, [11] gives 

OP---z~ = k T On' Op -~'p" [12] 

For a general equation of state this may be replaced, for small deviations n' from equilibrium, 
by 

aps _ { O ~  On' 
8"--ff - ~On']o-~p' [13] 

where the derivative allan' is evaluated at n '=  0, and can be estimated from experimental 
isotherms. 

To relate n and u, consider first the case in which there is surface diffusion in the film, 
together with adsorption from and desorption to the bulk fluid. In polar coordinates the 
equation of continuity for the surface molecules is (Levich 1962; Kenning 1968) 

1 a 1 a /  a n \ + i  ' [14] 

where j is a source term which accounts for the adsorbtion and desorption processes, and Ds is 
the coefficient of surface diffusion. For small departures from the equilibrium concentration, 
Levich (1962) has derived the form 

./= -/3(n - no) = -/3n', [15] 
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where 13 > 0 is a constant. Physically/3-i is a measure of the time required for the establish- 
ment of an adsorption equilibrium, and varies from seconds to milliseconds. Thus, from [14] 
and [15], 

1 0 (pnu)=D, 1 0 [ On'\ [16] 

In order to make analytic progress, suppose now that during the creeping motion n does not 
vary much from the equilibrium concentration no, i.e. n'lno~ 1. Condition [16] can then be 
replaced by 

no 0 D 10_.10n"~ 
"p op [17] 

a linearisation which dimensional considerations show to be valid When the surface Peclet 
number UalD, ~ 1, and Ula/3 ~ 1. There appears to be little experimental data on surface 
diffusion coefficients, but suggested values are of the order of 10 -5 cm 2 sec -I (Levieh 1962). 
Thus, Ua/D~ a 1 can only be satisfied for sufficiently small Ua. Equations [9], [12] (or [13]) and 
[17] now combine to provide the appropriate film boundary conditions, and they can be 
simplified in the special cases (i)/3 = 0, and (ii) D~ = 0. 

When /3 = 0, i.e. the surfactant is insoluble in the bulk fluid, [17] can be integrated 
immediately to give 

On' A 
+ --, [18] nou p 

where A is a constant of integration. Finiteness of u and n' at p = 0 implies that A = 0, and on 
combining [9], [12] and [18] we find the film boundary condition 

Ou {~01 Ou~ ul  pTpj-7/onz=0, [19] 

where a = kTnolD,. In the case D, = 0,/3# 0, from [12] and [17] 

Op,_ nokT[10 ( Ou) u} 
0"-~-- /3 l'pTp P-~p-'~" [20] 

It follows from [9] and [20] that 

au _ ~ . ~ . = ( ~ +  ,nokTX 1 0  au _ ~ } o  n [21] 

To complete the discussion of possible film processes we consider diffusion of a soluble 
surfactant from the bulk fluid into the film. Let c(p, z) denote the concentration of solute in the 
bulk. For dilute systems it is found that n(p) = hoc(p, 0), where ho is the adsorption depth as 
defined by Harper (1972), who also gives some typical values (in the nm or t~m range). 
Throughout the bulk fluid, c satisfies, in the quasi-steady approximation, the convective 
diffusion equation 

DoV2c = v" Vc, [22] 

where Do is the bulk diffusion coefficient. If the Peclet number UalDo ~ 1, then bulk diffusion 
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dominates over convection and c satisfies Laplace's equation 

V2c =0. [23] 

(Alternatively, an Oseen-type linearisation could be used.) 
It is convenient to define a fictitious "surface pressure" Ps and "surface concentration" n 

throughout the fluid by 

Ps = kThoc, n = hoc, [24] 

where the film has been assumed to be gaseous. We also wish to linearise about the equilibrium 
concentrations no and Co, and write 

n = no + n', C = Co + C', 

where, from [23] and [24], 

V2c '=  V2n '=  0, [25] 

throughout the bulk fluid. With these definitions, and allowing for surface diffusion, the surface 
mass-balance condition [14] has the linearised form 

n o a  (pu) n 1 a /  an ' \  _ / a c ' X  
= v ,  p ~  ~ , r~ ,  ) + °o~ ,~ ) z_  o ' p op 

[26] 

where the final term represents the diffusion flux to the film from the bulk. As with [17], this 
linearisation requires that Ua/Ds ~ 1. Using the second of equations [24] and [25], [26] may be 
written in the alternative form 

no fl.~ n [ 02n'~ .Do [ On'~ 
P 3p (pu) = - us[,--~-/~=o-,--~ ~-~z/~=o' [27] 

which must be considered in conjunction with [9] and [11]. Thus, the surface boundary 
conditions are complete; however we must also supply a boundary condition for c' at the 
moving solid reaction surface S. The simplest forms of this condition are of either the Dirichlet, 
Neumann or impedance type. For example, Oc'/Ov = 0 on S, where a/Ov denotes differentiation 
normal to S, corresponds to an impermeable sealed surface. 

3. THE STOKESLET PROBLEM 

To demonstrate the use of the linearised boundary conditions derived in the previous 
section, the problem of an axial Stokeslet of strengh f i ,  placed at p = 0, z = h, is considered. In 
an unbounded fluid the Stokeslet produces a velocity field Vo with components (uo, Wo), and a 
pressure distribution Po given by 

2 2 1 

2/zf(z ~- h) 
Po = Rl [28] 

In [28], Rl = {p2 + (z - h)2} I/2, and the pressure at infinity is taken to be zero. 
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It is readily verified that two solutions of [6] and [7] are furnished by 

v~ = zVCs- ~p~,, Pl = 2/Z~'z~, [291 

and 

v2 = zV(~z) - -~z ,+VX,  p2 = 2 / ~ z  , [30] 

where q(p, z) and X(P, z) are axisymmetric harmonic functions. Further, vl'/} = 0 and v2. i = 0 
on z = 0. We now represent the velocity and pressure fields in the semi-infinite bulk fluid as 

v=  vo+vl+v2, p=po+pl+p2.  

The harmonic functions ~b, X and n'(p, z) must be chosen so that on z = 0 we have that 

w = 0, [10] 

k,,, On' Ou , 1 a au u 

naa /a2n'\ Do~an'\ 
pTp(pu)  = - D, k - ~ - ) z = o + ~ i ~ z  ]~.o -/3n', [32] 

where [32] subsumes, for appropriate values of D,, Do and /3, each of the models of the 
previous section. 

Suitable representations of ~, X and the fictitious surface concentration n'(p, z), vanishing as 
p2.}. Z2...~ 00, arc 

d/(p, z) = I :  A(s) Jo(Sp) e-sz ds, [33] 

So X(P, z) = B(s) Jo(Sp) e -s~ ds, [341 

and 

I: n'(p, z) = C(s) lo(sp) e -~ ds, [351 

where ~, X, n' are all o(1) as h-~oo with Z =  z -  h fixed. Condition [10] implies that 

p2 
h2)]/2-(p2 + h2)312}, O~ p < O o, [36] fo A(s) J°(sp) ds = f{(P 2+ 

thus, invoking the Hankel inversion theorem, we find that 

A(s) = f(1 + sh) e-hL [37] 

Substituting [37] in [33] and e~,aluating the infinite integral gives the simple closed form 

t 1 , h(z+h)'[  O(P, z )=  f l ~ * ~ l '  [38] 

where R2 = {p2 + (z + h)2} I/2. 
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It remains to determine X and n'; substituting [34] and [35] into [31] and [32], and subsequent 

and 

Thus, on z = 0, [38] and [46] show that 

41.*nofhs 2 e-h~ 
C(s) = nokTs + (2tz + 3's)A ' [44] 

thereby completing the computation of X and n'. 
The surface velocity profile is given by 

fhp + [ O_..X_' ~ , 
//(p, O) = -- (p2 + h2)3/2 ~ap)z= 0 

which, using [34] and [35], can be reduced to 

fo ~ sA u(p, O) = - 4txfh nokTs + (2/z + 3's)A e-h" Jl(sp) ds. [45] 

It is also a simple matter in this problem to evaluate the unbalanced normal stress at the 
surface. In terms of ~b and X, the stress component %z is 

rzz = -  6/~f~ 7 h '3+ 2/~ ( -  ~z  + z 0~z~ + Z ~ z  ). 03 [46] 

12t zfh3 , 
~'zz = (p2 + h2)5/2 

a result in accord with that of Lee et al. (1979). 

[47] 

simplification give the relations 

f f  _ 61~fh2p ~,_ [ 15h 2 3 ] 
s{s(2/z + ys)B(s) + kTC(s)}J~(sp) ds 7 (p: + h2) sl2 - y1np[(p: + h:)7/2 - (p2 + hZ)mj~, 

[39] 

where 3' = ~ + K, and 

f® ( Dss 2 D o  no[h(2h2 - ,2), { -nos2B(s)+ +---~s+fl)C(s)}Jo(sp)ds= (p2 + h2)S/2 0 ~ < p < ~ .  [40] 

Applying the Hankel inversion theorem, 

s(2/z + 3's)B(s) + kTC(s) = fhs(21~ - 3's) e -h', [41] 

and 

nosB(s) + s-tA(s)C(s) = nofhs e -hs, [42] 

where A(s) = Dss 2 + (Do/ho)s + [3. B(s) and C(s) are now found as 

,. {nokTs + ( - 2/~ + ~,s)A} -h~ [43] 
B(s)= - f n  nokTs+(2/z +3"s)A e , 
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4. DRAG FORMULAE 

In this section the method of Brenner (1962) is used in conjunction with the results of the 
previous paragraphs to derive approximate expressions for the drag on an arbitrary axisym- 
metric particle which moves with velocity Ui. The z-axis is an axis of rotational symmetry of 
the particle, and - Fi ,  - F~i denote the hydrodynamical drag forces for the semi-infinite and 
an everywhere infinite bulk fluid, respectively. Our calculations provide formulae for F correct 
to O(a2/h2), where a is a typical particle dimension, and h is the distance of a suitable centre in 
the solid from the surfactant film. 

Brenner's result for the estimation of F when ~ = a/h ~ 1 depends on the use of the method 
of reflexions, and is valid for any surface limiting the fluid on which the boundary conditions 
are linear and homogeneous, requirements satisfied in the present work. Explicitly, F is 
expressed in the form 

F 1 
-~= = 1 - K(F®/67rl, Ua)e + O(e3) ' [48] 

where K is a constant depending only on the presence of the surfactant-covered plane surface, 
and not on the particle geometry.t 

To compute K we first identify the Stokeslet strength f in section 3 with F®18,rl~ (see 
equation (2.15) in Brenner 1962). If Vo (e) denotes the value of Vl + v2 (given by [29] and [30]), 
evaluated at the "centre" p = 0, z = h of the particle (i.e. at the singularity of Vo), then K is 
given by 

K = ~ = h  (Vo(2)" i). [49] 

Thus, from [29], [30], [34], [38] and [43], K is found as 

15 3h 3 f® s2{nokTs + ( -  2/x + Ts)A} e_2h s ds. 
K = ~-~ + 4 Jo nokTs + (2/x + ys)A [50] 

Bearing in mind the error estimate in the denominator of [48], the asymptotic expansion of 
[50], correct to O(e), is required for insertion in [48]. 

We proceed to examine the drag formulae supplied by [48] and [50] in various situations. 
Suppose first that the surfactant is insoluble with surface diffusion as the controlling process. 
Then A(s) = Oss 2. and 

/~ 15 3 .  
=iZ+~i ,  [51] 

where 

K1 = f f  "2(1 - Nla + N2e2t 2) -2t 
t I + N 1 f t + N 2 f 2 t  2 e dt, [52] 

with NI = 2~Ds/nokTa, N2 = (7 + r)DJnok Ta2, both dimensionless groups. The ratio N2/Nt = 
(7/+ r)/2/~a is analagous to the parameter A = ~l/l~a in the rotation problems (loc. cit.), if, for 
example, NI, N2 are both O(1), then 

1 3 K~ = ] - ]  Nie + O(e2), 

tThat the error term in [48] is O(e "3) for bodies possessing the symmetry which we envisage has also been established by 
Williams (1966), using integral-equation methods. 

MF Vol. 8, No. 6--E 
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and 

9 1 
K = ~ ( 1 - ~ N I e )  + O(e2). 

It follows from [48] that 

F 9 9 ( ~ )  = 1 + ~ I ~ +  ~ ~ - N I  ~2+O(~3), [531 

where ~ =  F®/6~r#Ua. For a spherical particle, ~ =  1, whereas for a disk-shaped particle 
moving normal to its plane, • = 8/3~r. 

Various other asymptotic limits of [52] can be found for different relative magnitudes of NI 
and N2 in terms of ¢, and it is of interest to enquire what numerical values of Nt and N2 can be 
expected. For a surfactant such as stearic acid on an aqueous substrate, 71 = 10 -3 surface poise, 
and tz = 10 -2 poise. A typical weak concentration has 7o-  1012 molecules cm -2, and at 25°C, 
kT ~ 4 x 10 -14 erg. There seems to be little experimental information available on D,, but Levich 
suggests that it is of the order of the bulk diffusion coefficient, i.e. Ds - 10 -5 cm 2 sec -~. 

We then find that 

N1 ~ lO-S/a, N2 ~ 10-61a 2. 

Only for a - 10 -3 cm is N2 - 1, and then N1 - 10 -2. With N2/NI ~ 100, the surface is responding 
to the substrate fluid motion much like a rigid plane. For instance, with ~ ~ 0.1, NI ~ ~2 and 
correct to O(,), K~ = 1/4 with K = 9/8, the value given by Brenner (1962) for a solid bounding 
plane. 

Consider next the situation in which adsorption and desorption dominate in the film, i.e. 
Ds = Do = 0. Then A(s) =/3 and 

15 3- 
K = ~-~ + ~ K2, [54] 

where 

K2 = f :  t 2(-  1 + N3a) -2t l+Na*t e dt, [551 

with N3 = (nokT[3 -l+ ~1 + r)/2l~a, a further dimensionless group. As a first example of this 
situation, suppose that N3 >> 1 with A = N3~ = O(1). Then K2 can be expressed in terms of the 
exponential integral El(x) (Shail 1979), and 

3 4 2/A 2 1 K = ~ { 3 - ~ j e  EI(2/A) + ~ -  ~}. [56] 

Thus, since K = O(1), [48] yields, on expansion in powers of ~, 

F = 1 + KtI~ + K2~2~ 2 + O(~3). [57] 
F~ 

If N3 = O(1), then from [54] and [55] 

K =  ~( l  +~ N3~) + O(~2). [58] 
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The appropriate expression for F/F® is now 

F -- 1 + 34-~ + 196.~(~ + N3)~2 + 0(~3).  
F® 

[59] 

A wide variation seems possible for N3; for/3 - 103 sec -I with the values of , and ~ used 
previously, N3 ~ lO-m/a. For /3 ~ 10 -2 sec -m, we find N3~ lO01a. However, little concrete in- 
formation seems to be available for 13 in practical situations. Note that for N3 = 0, we recover 
from [58] and [59] the results for a contaminant-free bounding surface, for which K = 314. 

It remains to discuss the bulk-diffusion dominated model with D~ = ~ = 0 and A(s)= 
(Do/ ho)s. Here, 

K 15 3- 
=N+~3, [601 

where 

: (-~4 - 1 + Nset) _-2~ K3 = t 2 ~ 1 +---~5~t e dt, [61] 

with N4 = honok772~Do and N5 = (7 + K)/2/~a, the final two dimensionless groups. (Ns has the 
structure of the A-parameter of the rotation problems.) As an illustration we consider F/F® 
when N4, N5 are both O(1). The direct expansion of [61] shows that 

N4-1  ~ 3N5 + 
K3=4(N4+I ) ~ ~  O(E2)' 

whence 

3(3N4 + 2) 9N5 
K = 8(N4+ 1) + 16(N4 + 1) 2 e +  O(~2)" [62] 

Thus, [48] predicts that 

F 1 ' 3 ( 3 N 4 + 2 ) ~  . 9¢b 
~-:= -e 8(N4+ 1) q'e'e64(N4+ 1) 2(4NS+(3N4+2)2¢b}e2+ O(eS)" [631 

However, the validity of [63] needs further consideration. 
In the solution of the Stokeslet problem and its subsequent application to the translating 

particle, the boundary condition satisfied by c' at the particle surface is not invoked. This is 
consistent within the first-reflexion process, since c' is O(~), as may be verified a posteriori, and 
c' supplies the first-order correction, demanded by the boundary conditions on z = 0, to the 
unperturbed uniform concentration situation. It follows that the O(e)- contribution to [63] is 
valid, irrespective of the boundary condition on c' at S, the surface of the particle. The same 
cannot be said of the O(~2)-term, which only remains correct if the effect of the translating 
particle on the solute concentration is ignored, i.e. the concentration in the bulk fluid merely 
adjusts itself in accordance with the boundary conditions on z =0. If this unconvincing 
approximation cannot be made, then form of the O(e')-term in [63] becomes dependent on the 
boundary condition applied to c' at S. Some examples of this will be given in a subsequent 
paper, wherein the restriction a/h ,~ 1 is relaxed. 

Further asymptotic limits of [61] can be written down for different relative magnitudes of 
N4, N5 in terms of e To estimate possible values for N4 and N5 we note that a typical 
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adsorption length ho is 10 -4 cm, and bulk diffusion constants of the order of 10 -5 cm 2 sec -~ are 
found. Thus for a surfactant with no-  1012, ~ - 10 -3 and # - 10 -2, we have that N4-  10 and 
N5-  1/10a. It must also be remembered that this bulk-diffusion model refers to small Peclet 
numbers Ua/ Do. 

5. CONCLUDING REMARKS 

In this paper a number of linearised models have been considered for the behaviour of the 
two-phase system in which a surfactant film coats a semi-infinite substrate fluid. In particular, 
the response of such films, both soluble and insoluble, to the axisymmetric motion generated by 
a particle of suitable symmetry has been examined. In situations in which the particle is a 
comparatively large distance from the film, it behaves in first approximation like a point force 
or Stokeslet applied in the bulk fluid, thus motivating the calculations of Sections 3 and 4 which 
lead to expressions for the drag force on the particle. In these sections some five dimensionless 
numbers are introduced, and the asymptotics of estimating the drag force on the particle is seen 
to depend on the relative magnitudes of these numbers. Thus a plethora of different formulae 
for F/F® become possible, and a representative selection is given in Section 4. 

The number of different physical parameters in the configuration under investigation is 
relatively large, and values of some of them (e.g. Ds, t )  seem to be rare in the literature. 
However, the linearised models adopted in this paper do allow analytic progress to be made in 
the solution of meaningful axisymmetric fluid mechanical problems, always within the compass 
of the quasi-steady Stokes approximation. Future papers in this series will attempt to remove 
some of the restrictions of this first work, notably with regard to the allowed magnitudes of 
and Ni, i = 1 .... 5. In particular, attention will be focussed on the translating circular disk and 
sphere. In the former case the well-developed methods for the solution of mixed boundary- 
value problems are available, and in the latter the use of bispherical coordinates allows progress 
to be made. External container boundaries for the bulk fluid can also be included. 

Further generalisations involve non-axially symmetric situations, typified by a Stokeslet 
placed in the bulk fluid with its axis parallel to the surfactant film. This configuration models a 
first approximation to a body moving parallel to the surface, but these and other relevant 
aspects will be treated elsewhere. 

REFERENCES 

ADAMSON, A. W. 1976 Physical Chemistry of Surfaces. Wiley, New York. 
BART, E. 1968 The slow unsteady settling of a fluid sphere toward a flat fluid interface. Chem. 

Engng Sci. 23, 193-210. 
BRENNER, H. 1961 The slow motion of a sphere through a viscous liquid towards a plane surface. 

Chem. Engng Sci. 16, 242-251. 
BRENNER, H. 1962 Effect of finite boundaries on the Stokes resistance of an arbitrary particle. 3.. 

Fluid Mech. 12, 35-48. 
BAILEY, P. B., DEEMER, A. R. & SLATTERY, J. C. 1976 Blunt knife-edge and disk surface 

viscometers. J. Colloid Int. Sci. 56, 1-18. 
DAVXES, J. T. & RIDEAL, E. K. 1961 Interfacial Phenomena. Academic Press, New York. 
GOODRICH, F. C. 1973 Progress in Surface and Membrane Science, Vol. 7, pp. 151-181. Academic 

Press, New York. 
HAPPEL, J. & BRENNER, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall, Engel- 

wood Cliffs, New Jersey. 
HARPER, J. F. 1972 Motion of bubbles and drops through liquids. Advan. Appl. Mech. 12, 

51-129. 
KENmN6, D. B. R. 1968 Two-phase flow with nonuniform surface tension. Appl. Mech. Rev. 21, 

1101-1111. 



ON THE SLOW TRANSLATION OF A SOLID SUBMERGED IN A FLUID WITH A SURFACTANT SURFACE FILM--1 639 

LEE, S. H., CHADWICK, R. S. & LEAL, L. G. 1979 Motion of a sphere in the presence of a plane 
interface. Part I. An approximate solution by generalization of the method of Lorentz. I. 
Fluid Mech. 93, 705-726. 

LEE, S. H. & LEAL, L. G. 1980 Motion of a sphere in the presence of a plane interface. Part II. 
An exact solution in bipolar coordinates. I. Fluid Mech. 98, 193-224. 

LEVICH, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall, Engelwood Cliffs, New 
Jersey. 

OH, S. G. & SLATTERY, J. C. 1978 Disk and biconical interfacial viscometers. J. Colloid Interface 
Sci. 67, 516--525. 

SCRIVEN, L. E. 1960 Dynamics of a fluid interface. Chem. Engng Sci. 12, 98-108. 
SHAIL, R. 1978 The torque on a rotating disk in the surface of a liquid with an adsorbed film. J. 

Engng Math. 12, 59-76. 
SHAm, R. 1979 The slow rotation of an axisymmetric solid submerged in a fluid with a surfactant 

surface layer--I. The rotating disk in a semi-infinite fluid. Int. J. Multiphase Flow 5, 
169-183. 

SHAIL, R. & GOODEN D. K. 1981 The slow rotation of an axisymmetric solid submerged in a fluid 
with a surfactant surface layer--II. The rotating solid in a bounded fluid. Int. J. Multiphase 
Flow 7, 245-260. 

WILLIAMS, W. E. 1966 Boundary effects in Stokes flow. J. Fluid Mech. 24, 285-291. 


